English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Characterization of a t(5;8)(q31;q21) translocation in a patient with mental retardation and congenital heart disease: implications for involvement of RUNX1T1 in human brain and heart development

MPS-Authors
/persons/resource/persons50606

Ullmann,  Reinhard
Molecular Cytogenetics (Reinhard Ullmann), Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Zhang, L., Tümer, Z., Møllgård, K., Barbi, G., Rossier, E., Bendsen, E., et al. (2009). Characterization of a t(5;8)(q31;q21) translocation in a patient with mental retardation and congenital heart disease: implications for involvement of RUNX1T1 in human brain and heart development. European Journal of Human Genetics, 17(8), 1010-1018. doi:10.1038/ejhg.2008.269.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-7D48-6
Abstract
The chromosome break points of the t(8;21)(q21.3;q22.12) translocation associated with acute myeloid leukemia disrupt the RUNX1 gene (also known as AML1) and the RUNX1T1 gene (also known as CBFA2T3, MTG8 and ETO) and generate a RUNX1–RUNX1T1 fusion protein. Molecular characterization of the translocation break points in a t(5;8)(q32;q21.3) patient with mild-to-moderate mental retardation and congenital heart disease revealed that one of the break points was within the RUNX1T1 gene. Analysis of RUNX1T1 expression in human embryonic and fetal tissues suggests a role of RUNX1T1 in brain and heart development and support the notion that disruption of the RUNX1T1 gene is associated with the patient's phenotype.