English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Oligomerization of the SPP1 scaffolding protein

MPS-Authors

Lurz,  Rudi
Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Poh, S. L., el Khadali, F., Berrier, C., Lurz, R., Melki, R., & Tavares, P. (2008). Oligomerization of the SPP1 scaffolding protein. Journal of Molecular Biology, 378(3), 551-564. doi:scaffolding protein; circular dichroism; chemical cross-linking; procapsid assembly; protein association.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-804E-0
Abstract
Viral scaffolding proteins direct polymerization of major capsid protein subunits into icosahedral procapsid structures. The scaffolding protein of bacteriophage SPP1 was engineered with a C-terminal hexahistidine tag (gp11-His6) and purified. The protein is an α-helical-rich molecule with a very elongated shape as found for internal scaffolding proteins from other phages. It is a 3.3 S tetramer of 93.6 kDa at micromolar concentrations. Intersubunit cross-linking of these tetramers generated preferentially covalently bound dimers, revealing that gp11-His6 is structurally a dimer of dimers. Incubation at temperatures above 37 °C correlated with a reduction of its α-helical content and a less effective intersubunit cross-linking. Complete loss of secondary structure was observed at temperatures above 60 °C. Refolding of gp11-His6 thermally denatured at 65 °C led to reacquisition of the protein native ellipticity spectrum but the resulting population of molecules was heterogeneous. Its hydrodynamic behavior was compatible with a mix of 3.3 S elongated tetramers (not, vert, similar 90%) and a smaller fraction of 2.4 S dimers (not, vert, similar 10%). This population of gp11-His6 was competent to direct polymerization of the SPP1 major capsid protein gp13 into procapsid-like structures in a newly developed assembly assay in vitro. Although native tetramers were active in assembly, refolded gp11-His6 showed enhanced binding to gp13 revealing a more active species for interaction with the major capsid protein than native gp11-His6.