Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Negative regulation of pPS10 plasmid replication: origin pairing by zipping-up DNA-bound RepA monomers

MPG-Autoren

Lurz,  Rudi
Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gasset-Rosa, F., Díaz-López, T., Lurz, R., Prieto, A., Fernández-Tresguerres, M. E., & Giraldo, R. (2008). Negative regulation of pPS10 plasmid replication: origin pairing by zipping-up DNA-bound RepA monomers. Molecular Microbiology, 68(3), 560-572. doi:10.1111/j.1365-2958.2008.06166.x.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0010-805B-1
Zusammenfassung
In many plasmid replicons of Gram-negative bacteria, Rep protein dimers are transcriptional self-repressors of their genes, whereas monomers are initiators of DNA replication. Switching between both functions implies conformational remodelling of Rep, and is promoted by Rep binding to the origin DNA repeats (iterons) or chaperones. Rep proteins play another key role: they bridge together two iteron DNA stretches, found either on the same or on different plasmid molecules. These so-called, respectively, 'looped' and 'handcuffed' complexes are thought to be negative regulators of plasmid replication. Although evidence for Rep-dependent plasmid handcuffing has been found in a number of replicons, the structure of these Rep–DNA assemblies is still unknown. Here, by a combination of proteomics, electron microscopy, genetic analysis and modelling, we provide insight on a possible three-dimensional structure for two handcuffed arrays of the iterons found at the origin of pPS10 replicon. These are brought together in parallel register by zipping-up DNA-bound RepA monomers. We also present evidence for a distinct role of RepA dimers in DNA looping. This work defines a new regulatory interface in Rep proteins.