Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Temporal transcriptomic analysis of the Listeria monocytogenes EGD-e sigmaB regulon


Haas,  Stefan
Gene Structure and Array Design (Stefan Haas), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Hain, T., Hossain, H., Chatterjee, S. S., Machata, S., Volk, U., Wagner, S., et al. (2008). Temporal transcriptomic analysis of the Listeria monocytogenes EGD-e sigmaB regulon. BMC Microbiology, 8(20). doi:10.1186/1471-2180-8-20.

Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-8079-C
Background The opportunistic food-borne gram-positive pathogen Listeria monocytogenes can exist as a free-living microorganism in the environment and grow in the cytoplasm of vertebrate and invertebrate cells following infection. The general stress response, controlled by the alternative sigma factor, σB, has an important role for bacterial survival both in the environment and during infection. We used quantitative real-time PCR analysis and immuno-blot analysis to examine σB expression during growth of L. monocytogenes EGD-e. Whole genome-based transcriptional profiling was used to identify σB-dependent genes at different growth phases. Results We detected 105 σB-positively regulated genes and 111 genes which appeared to be under negative control of σB and validated 36 σB-positively regulated genes in vivo using a reporter gene fusion system. Conclusion Genes comprising the σB regulon encode solute transporters, novel cell-wall proteins, universal stress proteins, transcriptional regulators and include those involved in osmoregulation, carbon metabolism, ribosome- and envelope-function, as well as virulence and niche-specific survival genes such as those involved in bile resistance and exclusion. Ten of the σB-positively regulated genes of L. monocytogenes are absent in L. innocua. A total of 75 σB-positively regulated listerial genes had homologs in B. subtilis, but only 33 have been previously described as being σB-regulated in B. subtilis even though both species share a highly conserved σB-dependent consensus sequence. A low overlap of genes may reflects adaptation of these bacteria to their respective environmental conditions.