English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Asterless is a centriolar protein required for centrosome function and embryo development in Drosophila

MPS-Authors
/persons/resource/persons50403

Lange,  Bodo
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Varmark, H., Llamazares, S., Rebollo, E., Lange, B., Reina, J., Schwarz, H., et al. (2007). Asterless is a centriolar protein required for centrosome function and embryo development in Drosophila. Current Biology, 17(20), 1735-1745. doi:10.1016/j.cub.2007.09.031.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-813E-C
Abstract
Background Centrosomes, the major organizers of the microtubule network in most animal cells, are composed of centrioles embedded in a web of pericentriolar material (PCM). Recruitment and stabilization of PCM on the centrosome is a centriole-dependent function. Compared to the considerable number of PCM proteins known, the molecular characterization of centrioles is still very limited. Only a few centriolar proteins have been identified so far in Drosophila, most related to centriole duplication. Results We have cloned asterless (asl) and found that it encodes a 120 kD highly coiled-coil protein that is a constitutive pancentriolar and basal body component. Loss of asl function impedes the stabilization/maintenance of PCM at the centrosome. In embryos deficient for Asl, development is arrested right after fertilization. Asl shares significant homology with Cep152, a protein described as a component of the human centrosome for which no functional data is yet available. Conclusions The cloning of asl offers new insight into the molecular composition of Drosophila centrioles and a possible model for the role of its human homolog. In addition, the phenotype of asl-deficient flies reveals that a functional centrosome is required for Drosophila embryo development.