English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Optimized energy consumption for protein synthesis

MPS-Authors
/persons/resource/persons50510

Szaflarski,  Witold
Ribosomes, Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50444

Nierhaus,  Knud H.
Ribosomes, Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Szaflarski, W., & Nierhaus, K. H. (2007). Optimized energy consumption for protein synthesis. Origins of Life and Evolution of Biospheres, 37(4-5), 423-428. doi:10.1007/s11084-007-9091-4.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-8162-5
Abstract
In our previous contribution (Nierhaus, Orig Life Evol Biosph, this volume, 2007) we mentioned that life had solved the problem of energy supply in three major steps, and that these steps also mark major stages during the development of life. We further outlined a possible scenario concerning a minimal translational apparatus focusing on the essential components necessary for protein synthesis. Here we continue that consideration by addressing on one of the main problems of early life, namely avoiding wasteful energy loss. With regard to the limiting energy supply of early living systems, i.e. those of say more than 3,000 Ma, a carefully controlled and product oriented energy consumption was in demand. In recent years we learned how a bacterial cell avoids energy drain, thus being able to pump most of the energy into protein synthesis. These lessons must be followed by the design of a minimal living system, which is surveyed in this short article.