English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Improved detection of overrepresentation of Gene-Ontology annotations with parent child analysis.

MPS-Authors

Grossmann,  Steffen
Max Planck Society;

/persons/resource/persons50496

Robinson,  Peter N.
Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50613

Vingron,  Martin
Gene regulation (Martin Vingron), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

3024.pdf
(Any fulltext), 814KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Grossmann, S., Bauer, S., Robinson, P. N., & Vingron, M. (2007). Improved detection of overrepresentation of Gene-Ontology annotations with parent child analysis. Bioinformatics, 23(22), 3024-3031. doi:10.1093/bioinformatics/btm440.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-8185-8
Abstract
Motivation: High-throughput experiments such as microarray hybridizations often yield long lists of genes found to share a certain characteristic such as differential expression. Exploring Gene Ontology (GO) annotations for such lists of genes has become a widespread practice to get first insights into the potential biological meaning of the experiment. The standard statistical approach to measuring overrepresentation of GO terms cannot cope with the dependencies resulting from the structure of GO because they analyze each term in isolation. Especially the fact that annotations are inherited from more specific descendant terms can result in certain types of false-positive results with potentially misleading biological interpretation, a phenomenon which we term the inheritance problem. Results: We present here a novel approach to analysis of GO term overrepresentation that determines overrepresentation of terms in the context of annotations to the term's parents. This approach reduces the dependencies between the individual term's measurements, and thereby avoids producing false-positive results owing to the inheritance problem. ROC analysis using study sets with overrepresented GO terms showed a clear advantage for our approach over the standard algorithm with respect to the inheritance problem. Although there can be no gold standard for exploratory methods such as analysis of GO term overrepresentation, analysis of biological datasets suggests that our algorithm tends to identify the core GO terms that are most characteristic of the dataset being analyzed.