English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Disruption of the CNTNAP2 gene in a t(7;15) translocation family without symptoms of Gilles de la Tourette syndrome

MPS-Authors
/persons/resource/persons50501

Ropers,  Hans-Hilger
Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Belloso, J. M., Bache, I., Guitart, M., Caballin, M. R., Halgren, C., Kirchhoff, M., et al. (2007). Disruption of the CNTNAP2 gene in a t(7;15) translocation family without symptoms of Gilles de la Tourette syndrome. European Journal og Human Genetics: EJHG; the Official Journal of the European Society of Human Genetics, 15(6), 711-713. doi:10.1038/sj.ejhg.5201824.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-8215-D
Abstract
Caspr2 is a member of neurexin superfamily, members of which are transmembrane proteins that mediate cellular interactions in the nervous system. Recently, truncation of the CNTNAP2 gene coding for the Caspr2 protein has been suggested to be associated with the Gilles de la Tourette syndrome, a neurological disorder characterized by motor and vocal tics, and behavioral anomalies. In this study, we describe a familial balanced reciprocal translocation t(7;15)(q35;q26.1) in phenotypically normal individuals. The 7q35 breakpoint disrupts the CNTNAP2 gene, indicating that truncation of this gene does not necessarily lead to the symptoms of the complex Gilles de la Tourette syndrome.