Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Allelic loss in a minimal region on chromosome 16q24 is associated with vitreous seeding of retinoblastoma


Ullmann,  Reinhard
Molecular Cytogenetics (Reinhard Ullmann), Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Gratias, S., Rieder, H., Ullmann, R., Klein-Hitpass, L., Schneider, S., Bölöni, R., et al. (2007). Allelic loss in a minimal region on chromosome 16q24 is associated with vitreous seeding of retinoblastoma. Cancer Research: an Official Organ of the American Association for Cancer Research, 67(1), 408-416. doi:10.1158/0008-5472.CAN-06-1317.

Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-8278-D
In addition to RB1 gene mutations, retinoblastomas frequently show gains of 1q and 6p and losses of 16q. To identify suppressor genes on 16q, we analyzed 22 short tandem repeat loci in 58 patients with known RB1 mutations. A subset of tumors was also investigated by conventional and matrix comparative genomic hybridization. In 40 of 58 (69%) tumors, we found no loss of heterozygosity (LOH) at any 16q marker. LOH was detected in 18 of 58 (31%) tumors, including five with allelic imbalance at some markers. In one tumor LOH was only observed at 16q24. As the parental origin of allele loss was unbiased, an imprinted locus is unlikely to be involved. Analysis of gene expression by microarray hybridization and quantitative RT real-time PCR did not identify a candidate suppressor in 16q24. Cadherin 13 (CDH13), CBFA2T3, and WFDC1, which are candidate suppressors in other tumor entities with 16q24 loss, did not show loss of expression. In addition, mutation and methylation analysis showed no somatic alteration of CDH13. Results in all tumors with chromosome 16 alterations define a single minimal deleted region of 5.7 Mb in the telomeric part of 16q24 with the centromeric boundary defined by retention of heterozygosity for a single nucleotide variant in exon 10 of CDH13 (Mb 82.7). Interestingly, clinical presentation of tumors with and without 16q alterations was distinct. Specifically, almost all retinoblastomas with 16q24 loss showed diffuse intraocular seeding. This suggests that genetic alterations in the minimal deleted region are associated with impaired cell-to-cell adhesion. [Cancer Res 2007;67(1):408–16]