English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Impact of low copy repeats on the generation of balanced and unbalanced chromosomal aberrations in mental retardation

MPS-Authors
/persons/resource/persons50145

Erdogan,  F.
Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50123

Chen,  W.
Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50369

Kalscheuer,  V. M.
Chromosome Rearrangements and Disease (Vera Kalscheuer), Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society;

Hultschig,  C.
Max Planck Society;

/persons/resource/persons73789

Müller,  I.
Molecular Cytogenetics (Reinhard Ullmann), Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society;

Schulz,  A.
Max Planck Society;

Menzel,  C.
Max Planck Society;

/persons/resource/persons50501

Ropers,  H.-H.
Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50606

Ullmann,  R.
Molecular Cytogenetics (Reinhard Ullmann), Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Erdogan, F., Chen, W., Kirchhoff, M., Kalscheuer, V. M., Hultschig, C., Müller, I., et al. (2006). Impact of low copy repeats on the generation of balanced and unbalanced chromosomal aberrations in mental retardation. Cytogenetic and Genome Research, 115(3-4), 247-253. doi:10.1159/000095921.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-835A-9
Abstract
Low copy repeats (LCRs) are stretches of duplicated DNA that are more than 1 kb in size and share a sequence similarity that exceeds 90%. Non-allelic homologous recombination (NAHR) between highly similar LCRs has been implicated in numerous genomic disorders. This study aimed at defining the impact of LCRs on the generation of balanced and unbalanced chromosomal rearrangements in mentally retarded patients. A cohort of 22 patients, preselected for the presence of submicroscopic imbalances, was analysed using submegabase resolution tiling path array CGH and the results were compared with a set of 41 patients with balanced translocations and breakpoints that were mapped to the BAC level by FISH. Our data indicate an accumulation of LCRs at breakpoints of both balanced and unbalanced rearrangements. LCRs with high sequence similarity in both breakpoint regions, suggesting NAHR as the most likely cause of rearrangement, were observed in 6/22 patients with chromosomal imbalances, but not in any of the balanced translocation cases studied. In case of chromosomal imbalances, the likelihood of NAHR seems to be inversely related to the size of the aberration. Our data also suggest the presence of additional mechanisms coinciding with or dependent on the presence of LCRs that may induce an increased instability at these chromosomal sites.