English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Integrative model of the response of yeast to osmotic shock

MPS-Authors
/persons/resource/persons50384

Klipp,  Edda
Independent Junior Research Groups (OWL), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Klipp et al. - Nat Biotechnol.pdf
(Any fulltext), 271KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Klipp, E., Nordlander, B., Krüger, R., Gennemark, P., & Hohmann, S. (2005). Integrative model of the response of yeast to osmotic shock. Nature Biotechnology, 23(8), 975-982. doi:10.1038/nbt1114.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-85EB-8
Abstract
Integration of experimental studies with mathematical modeling allows insight into systems properties, prediction of perturbation effects and generation of hypotheses for further research. We present a comprehensive mathematical description of the cellular response of yeast to hyperosmotic shock. The model integrates a biochemical reaction network comprising receptor stimulation, mitogen-activated protein kinase cascade dynamics, activation of gene expression and adaptation of cellular metabolism with a thermodynamic description of volume regulation and osmotic pressure. Simulations agree well with experimental results obtained under different stress conditions or with specific mutants. The model is predictive since it suggests previously unrecognized features of the system with respect to osmolyte accumulation and feedback control, as confirmed with experiments. The mathematical description presented is a valuable tool for future studies on osmoregulation in yeast and—with appropriate modifications—other organisms. It also serves as a starting point for a comprehensive description of cellular signaling.