Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Gene expression levels influence amino acid usage and evolutionary rates in endosymbiotic bacteria


Schaber,  Jörg
Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Schaber et al. - Gene.pdf
(Any fulltext), 257KB

Supplementary Material (public)
There is no public supplementary material available

Schaber, J., Rispe, C., Wernegreen, J., Buness, A., Delmotte, F., Silva, F. J., et al. (2005). Gene expression levels influence amino acid usage and evolutionary rates in endosymbiotic bacteria. Gene, 352, 109-17. doi:10.1016/j.gene.2005.04.003.

Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-862B-0
Most endosymbiotic bacteria have extremely reduced genomes, accelerated evolutionary rates, and strong AT base compositional bias thought to reflect reduced efficacy of selection and increased mutational pressure. Here, we present a comparative study of evolutionary forces shaping five fully sequenced bacterial endosymbionts of insects. The results of this study were three-fold: (i) Stronger conservation of high expression genes at not just nonsynonymous, but also synonymous, sites. (ii) Variation in amino acid usage strongly correlates with GC content and expression level of genes. This pattern is largely explained by greater conservation of high expression genes, leading to their higher GC content. However, we also found indication of selection favoring GC-rich amino acids that contrasts with former studies. (iii) Although the specific nutritional requirements of the insect host are known to affect gene content of endosymbionts, we found no detectable influence on substitution rates, amino acid usage, or codon usage of bacterial genes involved in host nutrition.