English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

High-throughput proteomics using matrix-assisted laser desorption/ ionization mass spectrometry

MPS-Authors
/persons/resource/persons50168

Gobom,  Johan
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50448

Nordhoff,  Eckhard
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Cramer, R., Gobom, J., & Nordhoff, E. (2005). High-throughput proteomics using matrix-assisted laser desorption/ ionization mass spectrometry. Expert Review of Proteomics, 2(3), 407-420. doi:10.1586/14789450.2.3.407.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-862E-A
Abstract
It has become evident that the mystery of life will not be deciphered just by decoding its blueprint, the genetic code. In the life and biomedical sciences, research efforts are now shifting from pure gene analysis to the analysis of all biomolecules involved in the machinery of life. One area of these postgenomic research fields is proteomics. Although proteomics, which basically encompasses the analysis of proteins, is not a new concept, it is far from being a research field that can rely on routine and large-scale analyses. At the time the term proteomics was coined, a gold-rush mentality was created, promising vast and quick riches (i.e., solutions to the immensely complex questions of life and disease). Predictably, the reality has been quite different. The complexity of proteomes and the wide variations in the abundances and chemical properties of their constituents has rendered the use of systematic analytical approaches only partially successful, and biologically meaningful results have been slow to arrive. However, to learn more about how cells and, hence, life works, it is essential to understand the proteins and their complex interactions in their native environment. This is why proteomics will be an important part of the biomedical sciences for the foreseeable future. Therefore, any advances in providing the tools that make protein analysis a more routine and large-scale business, ideally using automated and rapid analytical procedures, are highly sought after. This review will provide some basics, thoughts and ideas on the exploitation of matrix-assisted laser desorption/ ionization in biological mass spectrometry – one of the most commonly used analytical tools in proteomics – for high-throughput analyses.