English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

An integrative approach to gain insights into the cellular function of human ataxin-2

MPS-Authors
/persons/resource/persons50483

Ralser,  Markus
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50447

Nonhoff,  Ute
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50409

Lehrach,  Hans
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50396

Krobitsch,  Sylvia
Neurodegenerative Disorders (Sylvia Krobitsch), Independent Junior Research Groups (OWL), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Ralser et al. - JMB.pdf
(Any fulltext), 475KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Ralser, M., Albrecht, M., Nonhoff, U., Lengauer, T., Lehrach, H., & Krobitsch, S. (2005). An integrative approach to gain insights into the cellular function of human ataxin-2. Journal of Molecular Biology (London), 346(1), 203-214. doi:10.1016/j.jmb.2004.11.024.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-86DE-D
Abstract
Spinocerebellar ataxia type 2 (SCA2) is a hereditary neurodegenerative disorder caused by a trinucleotide expansion in the SCA2 gene, encoding a polyglutamine stretch in the gene product ataxin-2 (ATX2), whose cellular function is unknown. However, ATX2 interacts with A2BP1, a protein containing an RNA-recognition motif, and the existence of an interaction motif for the C-terminal domain of the poly(A)-binding protein (PABC) as well as an Lsm (Like Sm) domain in ATX2 suggest that ATX2 like its yeast homolog Pbp1 might be involved in RNA metabolism. Here, we show that, similar to Pbp1, ATX2 suppresses the petite (pet−) phenotype of Δmrs2 yeast strains lacking mitochondrial group II introns. This finding points to a close functional relationship between the two homologs. To gain insight into potential functions of ATX2, we also generated a comprehensive protein interaction network for Pbp1 from publicly available databases, which implicates Pbp1 in diverse RNA-processing pathways. The functional relationship of ATX2 and Pbp1 is further corroborated by the experimental confirmation of the predicted interaction of ATX2 with the cytoplasmic poly(A)-binding protein 1 (PABP) using yeast-2-hybrid analysis as well as co-immunoprecipitation experiments. Immunofluorescence studies revealed that ATX2 and PABP co-localize in mammalian cells, remarkably, even under conditions in which PABP accumulates in distinct cytoplasmic foci representing sites of mRNA triage.