English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The SRF target gene Fhl2 antagonizes RhoA/MAL-dependent activation of SRF

MPS-Authors

Dieterich,  Christoph
Max Planck Society;

/persons/resource/persons50613

Vingron,  Martin
Gene regulation (Martin Vingron), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Philippar, U., Schratt, G., Dieterich, C., Müller, J. M., Galgóczy, P., Engel, F. B., et al. (2004). The SRF target gene Fhl2 antagonizes RhoA/MAL-dependent activation of SRF. Molecular Cell, 16(12), 867-880. doi:10.1016/j.molcel.2004.11.039.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-876F-1
Abstract
RhoA signaling regulates the activity of the transcription factor SRF (serum response factor) during muscle differentiation. How RhoA signaling is integrated at SRF target promoters to achieve muscle-lineage-specific expression is largely unknown. Using large-scale expression profiling combined with bioinformatic and biochemical approaches, we identified several SRF target genes, including Fhl2, encoding a transcriptional cofactor that is highly expressed in the heart. SRF binds the Fhl2 promoter in vivo and regulates Fhl2 expression in response to RhoA activation. FHL2 protein and SRF interact physically, and FHL2 binds the promoters of SRF-responsive smooth muscle (SM) genes, but not the promoters of immediate-early genes (IEGs), in response to RhoA. FHL2 antagonizes induction of SM genes, but not IEGs or cardiac genes, by competing with the coactivator MAL/MRTF-A for SRF binding. Our findings identify an autoregulatory mechanism to selectively regulate subsets of RhoA-activated SRF target genes.