English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Honeybee (Apis mellifera L.) mrjp gene family: computational analysis of putative promoters and genomic structure of mrjp1, the gene coding for the most abundant protein of larval food

MPS-Authors

Malecova,  Barbora
Max Planck Society;

Ramser,  Juliane
Max Planck Society;

O'Brien,  John K.
Max Planck Society;

/persons/resource/persons50363

Janitz,  Michal
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50409

Lehrach,  Hans
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Malecova, B., Ramser, J., O'Brien, J. K., Janitz, M., Judova, J., Lehrach, H., et al. (2003). Honeybee (Apis mellifera L.) mrjp gene family: computational analysis of putative promoters and genomic structure of mrjp1, the gene coding for the most abundant protein of larval food. Gene, 303, 165-175. doi:10.1016/S0378-1119(02)01174-5.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-8ACA-C
Abstract
Mrjp1 gene belongs to the honeybee mrjp gene family encoding the major royal jelly proteins (MRJPs), secreted by nurse bees into the royal jelly. In this study, we have isolated the genomic clone containing the entire mrjp1 gene and determined its sequence. The mrjp1 gene sequence spans over 3038 bp and contains six exons separated by five introns. Seven mismatches between the mrjp1 gene sequence and two previously independently published cDNA sequences were found, but these differences do not lead to any change in the deduced amino acid sequence of MRJP1. With the aid of inverse polymerase chain reaction we obtained sequences flanking the 5′ ends of other mrjp genes (mrjp2, mrjp3, mrjp4 and mrjp5). Putative promoters were predicted upstream of all mrjp genes (including mrjp1). The predicted promoters contain the TATA motif (TATATATT), highly conserved both in sequence and position. Ultraspiracle (USP) transcription factor (TF) binding sites in putative promoter regions and clusters of dead ringer TF binding sites upstream of these promoters were predicted computationally. We propose that USP, as a juvenile hormone (JH) binding TF, might possibly act as a mediator of mrjp expression in response to JH. Mrjp1’s genomic locus is predicted to encode an antisense transcript, partially overlapping with five mrjp1 exons and entirely overlapping with the putative promoter and predicted transcriptional start point of mrjp1. This finding may shed light on the mechanisms of regulation of mrjps expression. Southern blot analysis of genomic DNA revealed that all so far known members of mrjp gene family (mrjp1, mrjp2, mrjp3, mrjp4 and mrjp5) are present as single-copy genes per haploid honeybee genome. Although MRJPs and the yellow protein of Drosophila melanogaster share a certain degree of similarity in aa sequence and although it has been shown that they share a common evolutionary origin, neither structural similarities in the gene organization, nor significant similarities between intron sequences of mrjp1 gene and fourteen yellow-like genes of D. melanogaster were found.