English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

TGGE screening of the entire FBN1 coding sequence in 126 individuals with marfan syndrome and related fibrillinopathies

MPS-Authors
/persons/resource/persons50605

Türkmen,  Seval
Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50496

Robinson,  Peter N.
Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Katzke, S., Booms, P., Tiecke, F., Palz, M., Pletschacher, A., Türkmen, S., et al. (2002). TGGE screening of the entire FBN1 coding sequence in 126 individuals with marfan syndrome and related fibrillinopathies. Human Mutation, 20(3), 197-208.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-8BC2-3
Abstract
Mutations in the gene for fibrillin-1 (FBN1) cause Marfan syndrome (MFS), an autosomal dominant heritable disorder of connective tissue with prominent manifestations in the skeletal, ocular, and cardiovascular system. FBN1 mutations have also been identified in a series of related disorders of connective tissue collectively termed type-1 fibrillinopathies. We have developed temperature-gradient gel electrophoresis (TGGE) assays for all 65 FBN1 exons, screened 126 individuals with MFS, other type-1 fibrillinopathies, and other potentially related disorders of connective tissue for FBN1 mutations, and identified a total of 53 mutations, of which 33 are described here for the first time. Several mutations were identified in individuals with fibrillinopathies other than classic Marfan syndrome, including aneurysm of the ascending aorta with only minor skeletal anomalies, and several individuals with only skeletal and ocular involvement. The mutation detection rate in this study was 42% overall, but was only 12% in individuals not fulfilling the diagnostic criteria for MFS, suggesting that clinical overdiagnosis is one reason for the low detection rate observed for FBN1 mutation analysis. Hum Mutat 20:197-208, 2002. © 2002 Wiley-Liss, Inc.