English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Variance stabilization applied to microarray data calibration and to the quantification of differential expression

MPS-Authors

von Heydebreck,  Anja
Max Planck Society;

/persons/resource/persons50613

Vingron,  Martin
Gene regulation (Martin Vingron), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Huber, W., von Heydebreck, A., Sültmann, H., Poustka, A., & Vingron, M. (2002). Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Proceedings of the Tenth International Conference on Intelligent Systems for Molecular Biology, S96-S104.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-8BDC-B
Abstract
We introduce a statistical model for microarray gene expression data that comprises data calibration, the quantification of differential expression, and the quantification of measurement error. In particular, we derive a transformation h for intensity measurements, and a difference statistic h whose variance is approximately constant along the whole intensity range. This forms a basis for statistical inference from microarray data, and provides a rational data pre-processing strategy for multivariate analyses. For the transformation h, the parametric form h(x)=arsinh(a+bx) is derived from a model of the variance-versus-mean dependence for microarray intensity data, using the method of variance stabilizing transformations. For large intensities, h coincides with the logarithmic transformation, and h with the log-ratio. The parameters of h together with those of the calibration between experiments are estimated with a robust variant of maximum-likelihood estimation. We demonstrate our approach on data sets from different experimental platforms, including two-colour cDNA arrays and a series of Affymetrix oligonucleotide arrays.