English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Coexpression of the cannabinoid receptor type 1 with dopamine and serotonin receptors in distinct neuronal subpopulations of the adult mouse forebrain

MPS-Authors

Hermann,  H
Max Planck Institute of Psychiatry, Max Planck Society;

Marsicano,  G
Max Planck Institute of Psychiatry, Max Planck Society;

Lutz,  B
Max Planck Institute of Psychiatry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hermann, H., Marsicano, G., & Lutz, B. (2002). Coexpression of the cannabinoid receptor type 1 with dopamine and serotonin receptors in distinct neuronal subpopulations of the adult mouse forebrain. Neuroscience, 109(3), 451-460.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000E-A27F-B
Abstract
The cannabinoid receptor type 1 (CB1) displays unusual properties, including the dual capacity to inhibit or stimulate adenylate cyclase and a brain density considerably higher than the majority of G protein-coupled receptors. Together with overlapping expression patterns of dopamine and serotonin receptors this suggests a potential of CB1 to modulate the function of the dopamine and serotonin system. Indeed, pharmacological studies provide evidence for cross-talks between CB1 and receptors of these neurotransmitter systems. In trying to obtain further insights into possible functional and/or structural interactions between CB1 and the dopamine receptors and the serotonin receptors, we performed double- label in situ hybridization at the cellular level on mouse forebrain sections by combining a digoxigenin-labelled riboprobe for CB1 with S-35-labelled riboprobes for dopamine receptors D1 and D2. and for serotonin receptors 5-HT1B and 5- HT3, respectively. As a general rule, we found that CB1 colocalizes with D1, D2 and 5-HT1B only in low-CB1-expressing cells which are principal projecting neurons, whereas CB1 coexpression with 5-HT3 was also observed in high-CB1- expressing cells which are considered to be mostly GABAergic. In striatum and olfactory tubercle, CB1 is coexpressed to a high extent with D1, D2 and 5-HT1B. Throughout the hippocampal formation, CB1 is coexpressed with D2, 5-HT1B and 5-HT3. In the neocortex. coexpression was detected only with 5-HT1B and 5- HT3. In summary a distinct pattern is emerging for the cannabinoid system with regard to its colocalization with dopamine and serotonin receptors and, therefore. it is likely that different mechanisms underlie its cross-talk with these neurotransmitter systems. (C) 2002 IBRO. Published by Elsevier Science Ltd. All rights reserv