English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Michelson interferometer with diffractively-coupled arm resonators in second-order Littrow configuration

MPS-Authors
/persons/resource/persons40433

Britzger,  Michael
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40512

Wimmer,  Maximilian
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40463

Khalaidovski,  Alexander
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40449

Friedrich,  Daniel
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40437

Danzmann,  Karsten
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40490

Schnabel,  Roman
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

1209.1961
(Preprint), 2MB

oe-20-23-25400.pdf
(Any fulltext), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Britzger, M., Wimmer, M., Khalaidovski, A., Friedrich, D., Kroker, S., Brueckner, F., et al. (2012). Michelson interferometer with diffractively-coupled arm resonators in second-order Littrow configuration. Optics Express, 20(23), 25400-25408. doi:10.1364/OE.20.025400.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000E-B16E-9
Abstract
Michelson-type laser-interferometric gravitational-wave (GW) observatories
employ very high light powers as well as transmissively- coupled Fabry-Perot
arm resonators in order to realize high measurement sensitivities. Due to the
absorption in the transmissive optics, high powers lead to thermal lensing and
hence to thermal distortions of the laser beam profile, which sets a limit on
the maximal light power employable in GW observatories. Here, we propose and
realize a Michelson-type laser interferometer with arm resonators whose
coupling components are all-reflective second-order Littrow gratings. In
principle such gratings allow high finesse values of the resonators but avoid
bulk transmission of the laser light and thus the corresponding thermal beam
distortion. The gratings used have three diffraction orders, which leads to the
creation of a second signal port. We theoretically analyze the signal response
of the proposed topology and show that it is equivalent to a conventional
Michelson-type interferometer. In our proof-of-principle experiment we
generated phase-modulation signals inside the arm resonators and detected them
simultaneously at the two signal ports. The sum signal was shown to be
equivalent to a single-output-port Michelson interferometer with
transmissively-coupled arm cavities, taking into account optical loss. The
proposed and demonstrated topology is a possible approach for future
all-reflective GW observatory designs.