English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Balanced Homodyne Detection of Optical Quantum States at Audio-Band Frequencies and Below

MPS-Authors
/persons/resource/persons40504

Vahlbruch,  H.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40463

Khalaidovski,  A.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40490

Schnabel,  R.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

1205.3229
(Preprint), 4KB

CQG_29_14_145015.pdf
(Any fulltext), 727KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Stefszky, M. S., Mow-Lowry, C. M., Chua, S. S. Y., Shaddock, D. A., Buchler, B. C., Vahlbruch, H., et al. (2012). Balanced Homodyne Detection of Optical Quantum States at Audio-Band Frequencies and Below. Classical and quantum gravity, 29(14): 145015. doi:10.1088/0264-9381/29/14/145015.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000E-B172-E
Abstract
The advent of stable, highly squeezed states of light has generated great interest in the gravitational wave community as a means for improving the quantumnoise- limited performance of advanced interferometric detectors. To confidently measure these squeezed states, it is first necessary to measure the shot-noise across the frequency band of interest. Technical noise, such as non-stationary events, beam pointing, and parasitic interference, can corrupt shot-noise measurements at low Fourier frequencies, below tens of kilo-Hertz. In this paper we present a qualitative investigation into all of the relevant noise sources and the methods by which they can be identified and mitigated in order to achieve quantum noise limited balanced homodyne detection. Using these techniques, flat shot-noise down to Fourier frequencies below 0.5 Hz is produced. This enables the direct observation of large magnitudes of squeezing across the entire audio-band, of particular interest for ground-based interferometric gravitational wave detectors. 11.6 dB of shot-noise suppression is directly observed, with more than 10 dB down to 10 Hz.