English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

In vivo localization and identification of SUMOylated proteins in the brain of His6-HA-SUMO1 knock-in mice.

MPS-Authors
/persons/resource/persons15253

Hsiao,  H. H.
Research Group of Bioanalytical Mass Spectrometry, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons41374

Nikolov,  M.
Research Group of Bioanalytical Mass Spectrometry, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15947

Urlaub,  H.
Research Group of Bioanalytical Mass Spectrometry, MPI for biophysical chemistry, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

1690412.pdf
(Publisher version), 2MB

1690412_SI.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Tirard, M., Hsiao, H. H., Nikolov, M., Urlaub, H., Melchior, F., & Brose, N. (2012). In vivo localization and identification of SUMOylated proteins in the brain of His6-HA-SUMO1 knock-in mice. Proceedings of the National Academy of Sciences of the United States of America, 109(51), 21122-21127. doi:10.1073/pnas.1215366110.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000E-CABF-E
Abstract
SUMOylation, an essential posttranslational protein modification, is involved in many eukaryotic cellular signaling pathways. The identification of SUMOylated proteins is difficult, because SUMOylation sites in proteins are hard to predict, SUMOylated protein states are transient in vivo and labile in vitro, only a small substrate fraction is SUMOylated in vivo, and identification tools for natively SUMOylated proteins are rare. To solve these problems, we generated knock-in mice expressing His6-HA-SUMO1. By anti-HA immunostaining, we show that SUMO1 conjugates in neurons are only detectable in nuclei and annulate lamellae. By anti-HA affinity purification, we identified several hundred candidate SUMO1 substrates, of which we validated Smchd1, Ctip2, TIF1γ, and Zbtb20 as novel substrates. The knock-in mouse represents an excellent mammalian model for studies on SUMO1 localization and screens for SUMO1 conjugates in vivo.