Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Heat and water vapour diffusivities near the base of a disturbed stable internal boundary layer


Laubach,  Johannes
Department Biogeochemical Processes, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Laubach, J., Mcnaughton, K. G., & Wilson, J. D. (2000). Heat and water vapour diffusivities near the base of a disturbed stable internal boundary layer. Boundary-Layer Meteorology, 94(1), 23-63.

Cite as: https://hdl.handle.net/11858/00-001M-0000-000E-CCB0-9
We present results from an experiment that was designed to investigate turbulent transport relationships in a nearly homogeneous boundary layer disturbed by unsteady wind swings, as found at the base of an advective inversion with a convective boundary layer overhead. In such a situation we measured vertical gradients and eddy fluxes of temperature and humidity at two heights. From these, the turbulent diffusivities of heat and water vapour are obtained, and compared to the predictions of Monin-Obukhov similarity theory and those of a numerical second-order closure model. It is found that the measured diffusivities exceed both predictions. This is interpreted as a consequence of the unsteady conditions. It is also found that the diffusivity for heat is roughly 10% larger than that for water vapour. This is in agreement with a theoretical treatment of the unsteadiness effects that we developed in an earlier publication. This result is not reproduced by the numerical model because the model has no provision for unsteady conditions. Our result disagrees with that from an earlier, very similar, field experiment, which may be due to a systematic underestimation of sensible heat flux in the older experiment. [References: 25]