Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges

MPG-Autoren
/persons/resource/persons62540

Schmidt,  M. W. I.
Molecular Biogeochemistry Group, Dr. G. Gleixner, Department Biogeochemical Processes, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schmidt, M. W. I., & Noack, A. G. (2000). Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Global Biogeochemical Cycles, 14(3), 777-793. doi:10.1029/1999GB001208.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000E-CD07-1
Zusammenfassung
This review highlights the ubiquity of black carbon (BC) produced by incomplete combustion of plant material and fossil fuels in peats, soils, and lacustrine and marine sediments. We examine various definitions and analytical approaches and seek to provide a common language. BC represents a continuum from partly charred material to graphite and soot particles, with no general agreement on clear-cut boundaries. Formation of BC can occur in two fundamentally different ways. Volatiles recondense to highly graphitized soot-BC, whereas the solid residues form char-BC. Both forms of BC are relatively inert and are distributed globally by water and wind via fluvial and atmospheric transport. We summarize, chronologically, the ubiquity of BC in soils and sediments since Devonian times, differentiating between BC from vegetation fires and from fossil fuel combustion. BC has important implications for various biological, geochemical and environmental processes. As examples, BC may represent a significant sink in the global carbon cycle, affect the Earth's radiative heat balance, be a useful tracer for Earth's fire history, build up a significant fraction of carbon buried in soils and sediments, and carry organic pollutants. On land, BC seems to be abundant in dark-colored soils, affected by frequent vegetation burning and fossil fuel combustion, thus probably contributing to the highly stable aromatic components of soil organic matter. We discuss challenges for future research. Despite the great importance of BC, only limited progress has been made in calibrating analytical techniques. Progress in the quantification of BC is likely to come from systematic intercomparison using BCs from different sources and in different natural matrices. BC identification could benefit from isotopic and spectroscopic techniques applied at the bulk and molecular levels. The key to estimating BC stocks in soils and sediments is an understanding of the processes involved in BC degradation on a molecular level. A promising approach would be the combination of short-term laboratory experiments and long-term field trials. [References: 181]