English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Climate change and Arctic ecosystems: I. Vegetation changes north of 55 degrees N between the last glacial maximum, mid-Holocene, and present

MPS-Authors
/persons/resource/persons62398

Harrison,  S. P.
Research Group Paleo-Climatology, Dr. S. P. Harrison, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62515

Prentice,  I. C.
Department Biogeochemical Synthesis, Prof. C. Prentice, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62429

Kaplan,  J. O.
Department Biogeochemical Systems, Prof. D. Schimel, Max Planck Institute for Biogeochemistry, Max Planck Society;
Department Biogeochemical Systems, Prof. D. Schimel, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62563

Smith,  B.
Department Biogeochemical Synthesis, Prof. C. Prentice, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Bigelow, N. H., Brubaker, L. B., Edwards, M. E., Harrison, S. P., Prentice, I. C., Anderson, P. M., et al. (2003). Climate change and Arctic ecosystems: I. Vegetation changes north of 55 degrees N between the last glacial maximum, mid-Holocene, and present. Journal of Geophysical Research: Atmospheres, 108(D19), 8170. doi:10.1029/2002JD002558.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000E-D006-E
Abstract
[1] A unified scheme to assign pollen samples to vegetation types was used to reconstruct vegetation patterns north of 55degreesN at the last glacial maximum (LGM) and mid-Holocene (6000 years B. P.). The pollen data set assembled for this purpose represents a comprehensive compilation based on the work of many projects and research groups. Five tundra types (cushion forb tundra, graminoid and forb tundra, prostrate dwarf-shrub tundra, erect dwarf-shrub tundra, and low- and high-shrub tundra) were distinguished and mapped on the basis of modern pollen surface samples. The tundra-forest boundary and the distributions of boreal and temperate forest types today were realistically reconstructed. During the mid-Holocene the tundra-forest boundary was north of its present position in some regions, but the pattern of this shift was strongly asymmetrical around the pole, with the largest northward shift in central Siberia (similar tO200 km), little change in Beringia, and a southward shift in Keewatin and Labrador (similar tO200 km). Low- and high-shrub tundra extended farther north than today. At the LGM, forests were absent from high latitudes. Graminoid and forb tundra abutted on temperate steppe in northwestern Eurasia while prostrate dwarf-shrub, erect dwarf-shrub, and graminoid and forb tundra formed a mosaic in Beringia. Graminoid and forb tundra is restricted today and does not form a large continuous biome, but the pollen data show that it was far more extensive at the LGM, while low- and high-shrub tundra were greatly reduced, illustrating the potential for climate change to dramatically alter the relative areas occupied by different vegetation types.