Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Intramolecular, compound-specific, and bulk carbon isotope patterns in C3 and C4 plants: a review and synthesis

MPG-Autoren
/persons/resource/persons62412

Hobbie,  E. A.
Department Biogeochemical Systems, Prof. D. Schimel, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62603

Werner,  R. A.
Service Facility Stable Isotope/Gas Analytics, Dr. W. A. Brand, Max Planck Institute for Biogeochemistry, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hobbie, E. A., & Werner, R. A. (2004). Intramolecular, compound-specific, and bulk carbon isotope patterns in C3 and C4 plants: a review and synthesis. New Phytologist, 161(2), 371-385. doi:10.1111/j.1469-8137.2004.00970.x.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000E-D1AC-3
Zusammenfassung
Studies using carbon isotope differences between C-3 and C-4 photosynthesis to calculate terrestrial productivity or soil carbon turnover assume that intramolecular isotopic patterns and isotopic shifts between specific plant components are similar in C-3 and C-4 plants. To test these assumptions, we calculated isotopic differences in studies measuring components from C-3 or C-4 photosynthesis. Relative to source sugars in fermentation, C-3-derived ethanol had less C-13 and C-3-derived CO2 had more C-13 than C-4-derived ethanol and CO2. Both results agreed with intramolecular isotopic signatures in C-3 and C-4 glucose. Isotopic shifts between plant compounds (e.g. lignin and cellulose) or tissues (e.g. leaves and roots) also differed in C-3 and C-4 plants. Woody C-3 plants allocated more carbon to C-13-depleted compounds such as lignin or lipids than herbaceous C-3 or C-4 plants. This allocation influenced C-13 patterns among compounds and tissues. Photorespiration and isotopic fractionation at metabolic branch points, coupled to different allocation patterns during metabolism for C-3 vs C-4 plants, probably influence position-specific and compound-specific isotopic differences. Differing C-13 content of mobile and immobile compounds (e.g. sugars vs lignin) may then create isotopic differences among plant pools and along transport pathways. We conclude that a few basic mechanisms can explain intramolecular, compound-specific and bulk isotopic differences between C-3 and C-4 plants. Understanding these mechanisms will improve our ability to link bulk and compound-specific isotopic patterns to metabolic pathways in C-3 and C-4 plants.