Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Toward a conceptual model of floodplain water table response

MPG-Autoren
/persons/resource/persons62425

Jung,  M.
Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Jung, M., Burt, T. P., & Bates, P. D. (2004). Toward a conceptual model of floodplain water table response. Water Resources Research, 40(12), W12409. doi:10.1029/2003WR002619.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000E-D1BF-A
Zusammenfassung
Hydrological processes operating within floodplains in temperate midlatitudes have significant implications for water management by controlling pollutant transfer between the catchment and the fluvial system. However, there is a lack of relevant high-resolution data from which the dynamics of floodplain hydrology during flood events can be inferred. A detailed analysis of water table fluctuations during flood events within a typical European lowland floodplain system (River Severn, United Kingdom) is presented. Data collected hourly along two 120-meter-long transects, each comprising four piezometers, plus one river stage sensor, are analyzed for the winter season 1998-1999 using correlation analysis, hysteresis curves, and water table maps. The objective is to develop a conceptual model that provides mechanistic understanding of floodplain water table response during flood events. River stage is shown to be the principal driver of water table fluctuations. Piezometers with similar water table response are identified; their consistent pattern of response in different flood events is attributed to sedimentary and morphological controls on the floodplain and adjoining hillslopes. Deviations from the general pattern are a function of low antecedent soil moisture, which is only a significant factor at the beginning of the winter season, when the floodplain is initially dry. Our conceptual model adopts a kinematic wave process whereby river stage change induces rapid responses of the water table over many tens of meters across the floodplain, associated with flux velocities several orders of magnitude higher than would be expected for Darcian flow. The occurrence of a groundwater ridge within the floodplain dams hillslope drainage and causes the water table to rise at the back of the floodplain. The disappearance of the groundwater ridge during the recession reestablishes hillslope flow into the floodplain, resulting in significant three-dimensional hydraulic gradients directed both perpendicular and parallel to the channel axis. [References: 27]