日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Inorganic soil nitrogen under grassland plant communities of different species composition and diversity

MPS-Authors
/persons/resource/persons62537

Scherer-Lorenzen,  M.
Department Biogeochemical Processes, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Palmborg, C., Scherer-Lorenzen, M., Jumpponen, A., Carlsson, G., Huss-Danell, K., & Högberg, P. (2005). Inorganic soil nitrogen under grassland plant communities of different species composition and diversity. Oikos, 110(2), 271-282. doi:10.1111/j.0030-1299.2005.13673.x.


引用: https://hdl.handle.net/11858/00-001M-0000-000E-D33A-4
要旨
We measured aboveground plant biomass and soil inorganic nitrogen pools in a biodiversity experiment in northern Sweden, with plant species richness ranging from 1 to 12 species. In general, biomass increased and nitrate pools decreased with increasing species richness. Transgressive overyielding of mixed plant communities compared to the most productive of the corresponding monocultures occurred in communities with and without legumes. N-2-fixing legumes had a fertilizing function, while non-legumes had a N retaining function. Plant communities with only legumes had a positive correlation between biomass and soil nitrate content, whereas in plant communities without legumes they were negatively correlated. Both nitrate and ammonium soil pools in mixed non-legume communities were approximately equal to the lowest observed in the corresponding monocultures. In mixed legume/non-legume communities, no correlation was found for soil nitrate with either biomass or legume biomass as percentage of total biomass. The idea of complementarity among species in nitrogen acquisition was supported in both pure non-legume and mixed non-legume/legume communities. In the latter, however, facilitation through increased nitrogen availability and retention, was probably dominating. Our results suggest that diversity effects on biomass and soil N pools through resource use complementarity depend on the functional traits of species, especially N-2 fixation or high productivity. [References: 48]