Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Quantifying the biologically possible range of steady-state soil and surface climates with climate model simulations


Kleidon,  A.
Research Group Biospheric Theory and Modelling, Dr. A. Kleidon, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Kleidon, A. (2006). Quantifying the biologically possible range of steady-state soil and surface climates with climate model simulations. Biologia (Bratislava), 61(19), S234-S239. doi:10.2478/s11756-006-0164-z.

Cite as: https://hdl.handle.net/11858/00-001M-0000-000E-D43A-B
The terrestrial biosphere shapes the exchange fluxes of energy and mass at the land surface. The diversity of plant form and functioning can potentially result in a wide variety of possible climatic conditions at the land surface and in the soil, which in turn feed back to more or less suitable conditions for terrestrial productivity. Here, I use sensitivity simulations to vegetation form and functioning with a global climate model to quantify this possible range of steady-states ("PROSS") of the surface energy- and mass balances. The surface energy- and water balances over land are associated with substantial sensitivity to vegetation parameters, with precipitation varying by more than a factor of 2, and evapotranspiration by a factor of 5. This range in biologically possible climatic conditions is associated with drastically different levels of vegetation productivity. Optimum conditions for maximum productivity axe close to the simulated climate of present-day conditions. These results suggest the conclusions that (a) climate does not determine vegetation form and function, but merely constrains it, and (b) the emergent climatic conditions at the land surface seem to be close to optimal for the functioning of the terrestrial biosphere. [References: 38]