Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Optimized stomatal conductance and the climate sensitivity to carbon dioxide

MPG-Autoren
/persons/resource/persons62438

Kleidon,  A.
Research Group Biospheric Theory and Modelling, Dr. A. Kleidon, Max Planck Institute for Biogeochemistry, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kleidon, A. (2007). Optimized stomatal conductance and the climate sensitivity to carbon dioxide. Geophysical Research Letters, 34(14), L14709. doi:10.1029/2007gl030342.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000E-D543-D
Zusammenfassung
Stomatal conductance shapes the exchange of water and carbon of vegetated land surfaces. Previous studies have demonstrated that optimized stomatal functioning that maximizes productivity provides a realistic description of how stomata operate. Here I investigate the role of optimum stomatal functioning for the sensitivity of terrestrial productivity and land surface climate to concentrations of atmospheric carbon dioxide (pCO(2)). I conduct sensitivity simulations with a coupled vegetation-climate system model with different values of maximum stomatal conductance at different prescribed levels of pCO(2). The optimum in stomatal conductance shifts to lower values with increasing pCO(2), which is consistent with observed sensitivities of stomatal density of leaves. If this change in optimum conditions is not taken into account, the climate sensitivity shows (1) a general underestimation of terrestrial productivity under altered pCO(2), and (2) different sensitivities of key climatic variables to pCO(2). The climate sensitivity of land temperature for a doubling of pCO(2) ranges from Delta T = 2.7 K to Delta T = 3.2 K, depending on whether stomata adapt optimally or not at all. These results demonstrate that the assumed ability of vegetation to adapt to its environment can have important consequences for the simulated climate system sensitivity to pCO(2).