Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Consequences of more extreme precipitation regimes for terrestrial ecosystems

MPG-Autoren
/persons/resource/persons62524

Reichstein,  M.
Research Group Biogeochemical Model-data Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Knapp, A. K., Beier, C., Briske, D. D., Classen, A. T., Luo, Y., Reichstein, M., et al. (2008). Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience, 58(9), 811-821. doi:10.1641/B580908.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000E-D6BC-8
Zusammenfassung
Amplification of the hydrological cycle as a consequence of global warming is forecast to lead more extreme intra-annual precipitation regimes. characterized by larger rainfall events and longer intervals between events. We present a conceptual framework, based on past investigations and ecological theory, for predicting the consequences of this underappreciated aspect of climate change. We consider a brand range of terrestrial ecosystems that vary in their over-all mater balance. More extreme rainfall regimes are expected to increase the duration and severity of soil water water stress in mesic ecosystems as intervals between rainfall events increase. In contrast, xeric ecosystems may exhibit the opposite response to extreme events. Larger but less frequent rainfall events may result in proportional reductions in evaporative losses in xenic systems, and thus may lead to greater soil water availability Hydric (wetland) ecosystems are predicted to experience reduced periods of anoxia in response to prolonged intervals between rainfall events. Understanding these contingent effects of ecosystem canter balance is necessary for predicting how nun e intervals precipitation regimes will modify ecosystem processes and alter interactions with related global change drivers. [References: 67]