Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

White spruce meets black spruce: dispersal, postfire establishment, and growth in a warming climate


Wirth,  C.
Research Group Organismic Biogeochemistry, Dr. C. Wirth, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Wirth, C., Lichstein, J. W., Dushoff, J., Chen, A., & Chapin, F. S. (2008). White spruce meets black spruce: dispersal, postfire establishment, and growth in a warming climate. Ecological Monographs, 78(4), 489-505.

Cite as: https://hdl.handle.net/11858/00-001M-0000-000E-D796-3
Local distributions of black spruce (Picea mariana) and white spruce ( Picea glauca) are largely determined by edaphic and topographic factors in the interior of Alaska, with black spruce dominant on moist permafrost sites and white spruce dominant on drier upland sites. Given the recent evidence for climate warming and permafrost degradation, the distribution of white spruce is expected to expand, but the transition from black to white spruce may be dispersal limited: unlike the semi-serotinous black spruce, post. re regeneration of white spruce relies on seed dispersal from unburned areas. To determine the relative roles of dispersal, establishment, and growth in recruitment of white and black spruce, we studied post. re spruce regeneration in a 21-year-old burn across a white spruce-black spruce transition in the interior of Alaska. Although prefire spatial distributions of adults of the two species were well separated along the topographic sequence from upland to floodplain sites, the spatial distributions of recruits overlapped considerably. Even > 700 m away from its seed source, white spruce sapling density on typical black spruce sites was high enough to form fully stocked stands. In contrast, black spruce regeneration was sparse on typical white spruce upland sites. Establishment rates of both species, estimated from a statistical model, were highest in mossy, wet depressions, which tended to have a thick residual post. re organic layer (similar to 10 cm). On all site types, height growth rates inferred from age-height relationships were comparable for recruits of both species. On typical black spruce sites >= 300 m into the burn, white spruce was younger (and, therefore, shorter) than black spruce due to the timing of masting events following the. re. There was no indication that dispersal, establishment, or edaphic constraints on juvenile growth limit white spruce's capacity to invade typical black spruce stands during the recruitment stage in our study area. It is unlikely that white spruce recruits would persist to the adult stage if the permafrost returned to the original prefire levels during future post. re succession. However, if permafrost continues to degrade under climate warming, transition to a white spruce-dominated landscape could be rapid. [References: 64]