User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse




Journal Article

Coupled weather research and forecasting-stochastic time-inverted lagrangian transport (WRF-STILT) model


Gerbig,  C.
Airborne Trace Gas Measurements and Mesoscale Modelling, Dr. habil. C. Gerbig, Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;

There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available

Nehrkorn, T., Eluszkiewicz, J., Wofsy, S. C., Lin, J. C., Gerbig, C., Longo, M., et al. (2010). Coupled weather research and forecasting-stochastic time-inverted lagrangian transport (WRF-STILT) model. Meteorology and Atmospheric Physics, 107(1-2), 51-64. doi:10.1007/s00703-010-0068-x.

Cite as: http://hdl.handle.net/11858/00-001M-0000-000E-DA53-5
This paper describes the coupling between a mesoscale numerical weather prediction model, the Weather Research and Forecasting (WRF) model, and a Lagrangian Particle Dispersion Model, the Stochastic Time-Inverted Lagrangian Transport (STILT) model. The primary motivation for developing this coupled model has been to reduce transport errors in continental-scale top-down estimates of terrestrial greenhouse gas fluxes. Examples of the model's application are shown here for backward trajectory computations originating at CO2 measurement sites in North America. Owing to its unique features, including meteorological realism and large support base, good mass conservation properties, and a realistic treatment of convection within STILT, the WRF-STILT model offers an attractive tool for a wide range of applications, including inverse flux estimates, flight planning, satellite validation, emergency response and source attribution, air quality, and planetary exploration.