English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment

MPS-Authors
/persons/resource/persons62589

Trumbore,  S. E.
Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Nowinski, N. S., Taneva, L., Trumbore, S. E., & Welker, J. M. (2010). Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment. Oecologia, 163(3), 785-792. doi:10.1007/s00442-009-1556-x.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000E-DA5C-4
Abstract
A snow addition experiment in moist acidic tussock tundra at Toolik Lake, Alaska, increased winter snow depths 2-3 m, and resulted in a doubling of the summer active layer depth. We used radiocarbon (a dagger C-14) to (1) determine the age of C respired in the deep soils under control and deepened active layer conditions (deep snow drifts), and (2) to determine the impact of increased snow and permafrost thawing on surface CO2 efflux by partitioning respiration into autotrophic and heterotrophic components. a dagger C-14 signatures of surface respiration were higher in the deep snow areas, reflecting a decrease in the proportion of autotrophic respiration. The radiocarbon age of soil pore CO2 sampled near the maximum mid-July thaw depth was approximately 1,000 years in deep snow treatment plots (45-55 cm thaw depth), while CO2 from the ambient snow areas was similar to 100 years old (30-cm thaw depth). Heterotrophic respiration a dagger C-14 signatures from incubations were similar between the two snow depths for the organic horizon and were extremely variable in the mineral horizon, resulting in no significant differences between treatments in either month. Radiocarbon ages of heterotrophically respired C ranged from < 50 to 235 years BP in July mineral soil samples and from 1,525 to 8,300 years BP in August samples, suggesting that old soil C in permafrost soils may be metabolized upon thawing. In the surface fluxes, this old C signal is obscured by the organic horizon fluxes, which are significantly higher. Our results indicate that, as permafrost in tussock tundra ecosystems of arctic Alaska thaws, carbon buried up to several thousands of years ago will become an active component of the carbon cycle, potentially accelerating the rise of CO2 in the atmosphere.