Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Detecting human-driven deviations from trajectories in landscape composition and configuration


Proulx,  R.
Research Group Organismic Biogeochemistry, Dr. C. Wirth, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Proulx, R., & Fahrig, L. (2010). Detecting human-driven deviations from trajectories in landscape composition and configuration. Landscape Ecology, 25(10), 1479-1487. doi:10.1007/s10980-010-9523-9.

Cite as: https://hdl.handle.net/11858/00-001M-0000-000E-DA7D-9
While landscape trajectories are increasingly used for tracking change in processes such as agricultural intensification and urbanization, analyses that combine environmental and human disturbances remain scarce. The aim of this study was to investigate the relationship between Shannon evenness, a measure of landscape composition, and spatial contagion, a measure of landscape configuration, within sixteen Canadian regions covering a gradient of land-uses and human disturbances: natural, semi-natural, urban, and agricultural. The agricultural regions showed generally lower variation in contagion and evenness and overall lower contagion values (smaller patches), leading to steeper contagion-evenness slopes than in the other region categories. In addition, the sampled agricultural regions were much more similar to each other than were the sampled regions within each of the other three region categories. These results indicate that the process of agricultural development (at least in western Canada) leads to a reduction in pattern variation and an alteration of the expected relationships among pattern metrics in agricultural regions. This possibility is supported by a neutral model of patch dynamics, suggesting that the characteristic scale of disturbances is a generic structuring process of landscape trajectories.