English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Discrete versus continuous analysis of anatomical and δ13C variability in tree rings with intra-annual density fluctuations

MPS-Authors
/persons/resource/persons62345

Brand,  Willi A.
Service Facility Stable Isotope, Dr. W. A. Brand, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62463

Linke,  Petra
Service Facility Stable Isotope, Dr. W. A. Brand, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

De Micco, V., Battipaglia, G., Brand, W. A., Linke, P., Saurer, M., Aronne, G., et al. (2012). Discrete versus continuous analysis of anatomical and δ13C variability in tree rings with intra-annual density fluctuations. Trees, 26(2), 513-524. doi:10.1007/s00468-011-0612-4.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000E-DD2D-5
Abstract
Intra-annual density fluctuations (IADFs) are anomalies of tree rings where wood density is abruptly altered after sudden changes in environmental conditions. Their characterisation can provide information about the relationship between environmental factors and eco-physiological processes during tree growth. This paper reports about the variability of anatomical traits and stable carbon isotopic composition along tree rings as resulting from the application of two different methodological approaches: (a) the separation of each ring into different regions (earlywood, latewood and IADF) and the comparison of anatomical and isotopic parameters measured in those specific sectors and (b) the analysis of such features in continuum along ring width. Moreover, different parameters of vessels (i.e. ecd—equivalent circle diameter, elongation, sphericity and convexity of vessel lumen) were considered to identify those more appropriate for the representation of intra-annual anatomical variations. The analysis was conducted on Arbutus unedo L. growing on the Elba Island (Italy); tree rings of this species form IADFs with features clearly responsive to the environmental conditions experienced during plant growth. Results showed that the first approach, although more suitable to obtain data for subsequent statistical comparisons and for the calculation of correlations with environmental parameters, suffers from elements of subjectivity due to the size and position of the selected tree-ring regions. The in continuum method allows a clearer identification of the variation of tree-ring properties along ring width. Regarding anatomical parameters, shape indexes were not suitable indicators of intra-annual variability. The overall analysis suggested that using both methodologies in synergy helps to gain complete information and avoid misleading interpretations of IADFs in tree rings.