English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Climate classifications: the value of unsupervised clustering

MPS-Authors
/persons/resource/persons76340

Zscheischler,  Jakob
Research Group Biogeochemical Model-data Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;
IMPRS International Max Planck Research School for Global Biogeochemical Cycles, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62472

Mahecha,  Miguel D.
Research Group Biogeochemical Model-data Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

Locator
Fulltext (public)

BGC1666.pdf
(Publisher version), 4MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Zscheischler, J., Mahecha, M. D., & Harmeling, S. (2012). Climate classifications: the value of unsupervised clustering. Procedia Computer Science, 9, 897-906. doi:10.1016/j.procs.2012.04.096.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000E-DDDA-E
Abstract
Classifying the land surface according to different climate zones is often a prerequisite for global diagnostic or predictive modelling studies. Classical classifications such as the prominent K̈oppen–Geiger (KG) approach rely on heuristic decision rules. Although these heuristics may transport some process understanding, such a discretization may appear “arbitrary” from a data oriented perspective. In this contribution we compare the precision of a KG classification to an unsupervised classification (k-means clustering). Generally speaking, we revisit the problem of “climate classification” by investigating the inherent patterns in multiple data streams in a purely data driven way. One question is whether we can reproduce the KG boundaries by exploring different combinations of climate and remotely sensed vegetation variables. In this context we also investigate whether climate and vegetation variables build similar clusters. In terms of statistical performances, k-means clearly outperforms classical climate classifications. However, a subsequent stability analysis only reveals a meaningful number of clusters if both climate and vegetation data are considered in the analysis. This is a setback for the hope to explain vegetation by means of climate alone. Clearly, classification schemes like K̈oppen-Geiger will play an important role in the future. However, future developments in this area need to be assessed based on data driven approaches.