English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Modelling Zwitterions in Solution: 3-Fluoro-y-aminobutyric Acid (3F-GABA)

MPS-Authors
/persons/resource/persons59045

Thiel,  Walter
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Cao, J., Bjornsson, R., Bühl, M., Thiel, W., & van Mourik, T. (2012). Modelling Zwitterions in Solution: 3-Fluoro-y-aminobutyric Acid (3F-GABA). Chemistry-a European Journal, 18, 184-195. doi:10.1002/chem.201101674.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000E-E04B-6
Abstract
The conformations and relative stabilities of folded and extended 3-fluoro-γ-aminobutyric acid (3F-GABA) conformers were studied using explicit solvation models. Geometry optimisations in the gas phase with one or two explicit water molecules favour folded and neutral structures containing intramolecular NH⋅⋅⋅O-C hydrogen bonds. With three or five explicit water molecules zwitterionic minima are obtained, with folded structures being preferred over extended conformers. The stability of folded versus extended zwitterionic conformers increases on going from a PCM continuum solvation model to the microsolvated complexes, though extended structures become less disfavoured with the inclusion of more water molecules. Full explicit solvation was studied with a hybrid quantum-mechanical/molecular-mechanical (QM/MM) scheme and molecular dynamics simulations, including more than 6000 TIP3P water molecules. According to free energies obtained from thermodynamic integration at the PM3/MM level and corrected for B3LYP/MM total energies, the fully extended conformer is more stable than folded ones by about −4.5 kJ mol−1. B3LYP-computed 3J(F,H) NMR spin–spin coupling constants, averaged over PM3/MM-MD trajectories, agree best with experiment for this fully extended form, in accordance with the original NMR analysis. The seeming discrepancy between static PCM calculations and experiment noted previously is now resolved. That the inexpensive semiempirical PM3 method performs so well for this archetypical zwitterion is encouraging for further QM/MM studies of biomolecular systems.