Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

A general model for the light-use efficiency of primary production

There are no MPG-Authors in the publication available
External Resource

(Publisher version)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Haxeltine, A., & Prentice, I. C. (1996). A general model for the light-use efficiency of primary production. Functional Ecology, 10(5), 551-561. doi:10.2307/2390165.

Cite as: https://hdl.handle.net/11858/00-001M-0000-000E-E06C-B
1. Net primary production (NPP) by terrestrial ecosystems appears to be proportional to absorbed photosynthetically active radiation (APAR) on a seasonal and annual basis. This observation has been used in 'diagnostic' models that estimate NPP from remotely sensed vegetation indices. In 'prognostic' process-based models carbon fluxes are more commonly integrated with respect to leaf area index assuming invariant leaf photosynthetic parameters. This approach does not lead to a proportional relationship between NPP and APAR. However, leaf nitrogen content and Rubisco activity are known to vary seasonally and with canopy position, and there is evidence that this variation takes place in such a way as to nearly optimize total canopy net photosynthesis. 2. Using standard formulations for the instantaneous response of leaf net photosynthesis to APAR, we show that the optimized canopy net photosynthesis is proportional to APAR. This theory leads to reasonable values for the maximum (unstressed) light-use efficiency of gross and net primary production of C-3 plants at current ambient CO2, comparable with empirical estimates for agricultural crops and forest plantations. 3. By relating the standard formulations to the Collatz-Farquhar model of photosynthesis, we show that a range of observed physiological responses to temperature and CO2 can be understood as consequences of the optimization. These responses include the CO2 fertilization response and stomatal closure in C-3 plants, the increase of leaf N concentration with decreasing growing season temperature, and the downward acclimation of leaf respiration and N content with increasing ambient CO2. The theory provides a way to integrate diverse experimental observations into a general framework for modelling terrestrial primary production.