Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Nonadiabatic Dynamics of a Truncated Indigo Model

MPG-Autoren
/persons/resource/persons58498

Cui,  Ganglong
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons59045

Thiel,  Walter
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Cui, G., & Thiel, W. (2012). Nonadiabatic Dynamics of a Truncated Indigo Model. Physical Chemistry Chemical Physics, 14(35), 12378-12384. doi:10.1039/c2cp41867c.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000E-E6C3-A
Zusammenfassung
Indigo (1) is stable when exposed to ultraviolet light. We employ electronic structure calculations and nonadiabatic trajectory surface-hopping dynamics simulations to study the photoinduced processes and the photoprotection mechanism of an indigo model, bispyrroleindigo (2). Consistent with recent static ab initio calculations on 1 and 2 (Phys. Chem. Chem. Phys., 2011, 13, 1618), we find an efficient deactivation process that proceeds as follows. After vertical photoexcitation, the S1(ππ*) state undergoes an essentially barrierless intramolecular single proton transfer and relaxes to the minimum of an S1 tautomer, which is structurally and energetically close to a nearby conical intersection that acts as a funnel to the S0 state; after this internal conversion, a reverse single hydrogen transfer leads back to the equilibrium structure of the most stable S0 tautomer. This deactivation process is completely dominant in our semiempirical OM2/MRCI nonadiabatic dynamics simulations. The other two mechanisms considered previously, namely excited-state intramolecular double proton transfer and trans–cis double bond isomerization, are not seen in any of the 325 trajectories of the present surface-hopping simulations. On the basis of the computed time-dependent populations of the S1 state, we estimate an S1 lifetime of about 700 fs for 2 in the gas phase.