English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

DNA–Methylome Analysis of Mouse Intestinal Adenoma Identifies a Tumour-Specific Signature That Is Partly Conserved in Human Colon Cancer

MPS-Authors
/persons/resource/persons50173

Grimm,  Christina
In vitro Ligand Screening (Zoltán Konthur), Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50121

Chavez,  Lukas
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50611

Vilardell,  Mireia
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50147

Farrall,  Alexandra
Dept. of Developmental Genetics (Head: Bernhard G. Herrmann), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50177

Grote,  Phillip
Dept. of Developmental Genetics (Head: Bernhard G. Herrmann), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons73812

Lienhard,  Matthias
Bioinformatics (Ralf Herwig), Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

Dietrich,  Jörn
In vitro Ligand Screening (Zoltán Konthur), Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50598

Timmermann,  Bernd
Sequencing (Head: Bernd Timmermann), Scientific Service (Head: Christoph Krukenkamp), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50543

Schweiger,  Michal R.
Cancer Genomics (Michal-Ruth Schweiger), Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50409

Lehrach,  Hans
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50202

Herwig,  Ralf
Bioinformatics (Ralf Herwig), Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50201

Herrmann,  Bernhard G.
Dept. of Developmental Genetics (Head: Bernhard G. Herrmann), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50435

Morkel,  Markus
Dept. of Developmental Genetics (Head: Bernhard G. Herrmann), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Grimm.pdf
(Publisher version), 4MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Grimm, C., Chavez, L., Vilardell, M., Farrall, A., Tierling, S., Böhm, J. W., et al. (2013). DNA–Methylome Analysis of Mouse Intestinal Adenoma Identifies a Tumour-Specific Signature That Is Partly Conserved in Human Colon Cancer. PLoS Genetics, 9(2), e1003250-e1003250. doi:10.1371/journal.pgen.1003250.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000E-E7A4-8
Abstract
Aberrant CpG methylation is a universal epigenetic trait of cancer cell genomes. However, human cancer samples or cell lines preclude the investigation of epigenetic changes occurring early during tumour development. Here, we have used MeDIP-seq to analyse the DNA methylome of APCMin adenoma as a model for intestinal cancer initiation, and we present a list of more than 13,000 recurring differentially methylated regions (DMRs) characterizing intestinal adenoma of the mouse. We show that Polycomb Repressive Complex (PRC) targets are strongly enriched among hypermethylated DMRs, and several PRC2 components and DNA methyltransferases were up-regulated in adenoma. We further demonstrate by bisulfite pyrosequencing of purified cell populations that the DMR signature arises de novo in adenoma cells rather than by expansion of a pre-existing pattern in intestinal stem cells or undifferentiated crypt cells. We found that epigenetic silencing of tumour suppressors, which occurs frequently in colon cancer, was rare in adenoma. Quite strikingly, we identified a core set of DMRs, which is conserved between mouse adenoma and human colon cancer, thus possibly revealing a global panel of epigenetically modified genes for intestinal tumours. Our data allow a distinction between early conserved epigenetic alterations occurring in intestinal adenoma and late stochastic events promoting colon cancer progression, and may facilitate the selection of more specific clinical epigenetic biomarkers.