Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Systematic distortions in musicians' reproduction of cyclic three-interval rhythms


Keller,  Peter E.
Max Planck Research Group Music Cognition and Action, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

(Publisher version), 562KB

Supplementary Material (public)
There is no public supplementary material available

Repp, B. H., London, J., & Keller, P. E. (2013). Systematic distortions in musicians' reproduction of cyclic three-interval rhythms. Music Perception, 30(3), 291-305. doi:10.1525/mp.2012.30.3.291.

Cite as: https://hdl.handle.net/11858/00-001M-0000-000E-EA2C-F
In a classic study, Fraisse (1956) demonstrated that sequences of four sounds defining three different interval durations exhibit characteristic distortions in reproduction: The two more similar intervals tend to be assimilated to each other, resulting in a rhythm containing just two interval durations. The present study examined whether highly trained musicians (including percussionists) are able to perform such rhythms accurately in a synchronization-continuation tapping paradigm. Eleven rhythms, a subset of those used by Fraisse, were presented cyclically at his original tempo and also at a slower tempo. The musicians produced significant rhythm distortions, though they were smaller than those observed by Fraisse and not always assimilative. They were relatively larger at the fast than at the slow tempo and occurred in both synchronization and continuation. In contrast to Fraisse’s data, the most variably reproduced target rhythm was the one in which the two longer intervals were identical. The pattern of distortions suggested attraction towards ideal rhythms in which all three interval durations are different, representing metrical categories with nominally simple interval ratios (some permutation of 1:2:3) that were probably activated by the cyclic presentation of the rhythms. However, these attractors themselves seemed to be somewhat distorted, perhaps reflecting the simultaneous presence of a nonmetrical attractor that differentiated two interval categories regardless of ratio, as observed by Fraisse.