日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

会議論文

Material effects in binary neutron star inspiral waveforms

MPS-Authors
/persons/resource/persons20670

Rezzolla,  Luciano
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Markakis, C., Read, J., Baiotti, L., Creighton, J., Giacomazzo, B., Friedman, J., Rezzolla, L., Shibata, M., & Taniguchi, K. (2011). Material effects in binary neutron star inspiral waveforms. Bulletin of the American Physical Society, 56(4):.


引用: https://hdl.handle.net/11858/00-001M-0000-000E-EF7E-B
要旨
Tidal effects due to the presence of matter in binary neutron star inspiral cause the gravitational wave phase to accumulate more rapidly than in binary black hole inspiral. We report a comparison of numerical waveforms from an extended set of simulations of inspiraling neutron-star binaries, computed by systematically varying the parameters of the equation of state above nuclear density. We calculate the signal strength of the difference between waveforms and obtain improved estimates of the accuracy with which second and third generation gravitational wave detectors can constrain the neutron-star equations of state. We also show how a observation of N events at varying distances improves the measurability.