日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

An overexpression screen of Toxoplasma gondii Rab-GTPases reveals distinct transport routes to the micronemes.

MPS-Authors
/persons/resource/persons85147

Kamin,  D.
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15719

Rittweger,  E.
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15210

Hell,  S. W.
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

1719682.pdf
(出版社版), 8MB

付随資料 (公開)
There is no public supplementary material available
引用

Kremer, K., Kamin, D., Rittweger, E., Wilkes, J., Flammer, H., Mahler, S., Heng, J., Tonkin, C. J., Langsley, G., Hell, S. W., Carruthers, V. B., Ferguson, D. J. P., & Meissner, M. (2013). An overexpression screen of Toxoplasma gondii Rab-GTPases reveals distinct transport routes to the micronemes. PLoS Pathogens, 9(3):. doi:10.1371/journal.ppat.1003213.


引用: https://hdl.handle.net/11858/00-001M-0000-000E-F14C-C
要旨
Eukaryotic cells evolved a highly complex endomembrane system, consisting of secretory and endocytic organelles. In the case of apicomplexan parasites unique secretory organelles have evolved that are essential for the invasion of the host cell. Surprisingly these protozoans show a paucity of trafficking factors, such as Rabs and it appears that they lost several factors involved in endocytosis. Here, we demonstrate that Rab5A and Rab5C, normally involved in endocytic uptake, actually regulate secretion in Toxoplasma gondii, since functional ablation of Rab5A or Rab5C results in aberrant transport of proteins to specialised secretory organelles called micronemes and rhoptries. Furthermore, we demonstrate that independent transport routes to micronemes exist indicating that apicomplexans have remodelled Rab5-mediated vesicular traffic into a secretory system that is essential for host cell invasion.