English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Artificial Metalloenzymes as Catalysts in Stereoselective Diels–Alder Reactions

MPS-Authors
/persons/resource/persons58919

Reetz,  Manfred T.
Research Department Reetz, Max-Planck-Institut für Kohlenforschung, Max Planck Society;
Philipps-Universität Marburg, Fachbereich Chemie;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Reetz, M. T. (2012). Artificial Metalloenzymes as Catalysts in Stereoselective Diels–Alder Reactions. The Chemical Record, 12(4), 391-406. doi:10.1002/tcr.201100043.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000E-F15B-8
Abstract
Numerous enzymes are useful catalysts in synthetic organic chemistry, but they cannot catalyze the myriad transition-metal-mediated transformations customary in daily chemical work. For this reason the concept of directed evolution of hybrid catalysts was proposed some time ago. A synthetic ligand/transition-metal moiety is anchored covalently or non-covalently to a host protein, thereby generating a single artificial metalloenzyme which can then be optimized by molecular biological methods. In the quest to construct an appropriate experimental platform for asymmetric Diels–Alder reactions amenable to this Darwinian approach to catalysis, specifically those not currently possible using traditional chiral transition-metal catalysts, two strategies have been developed which are reviewed here. One concerns the supramolecular anchoring of a Cu(II)-phthalocyanine complex to serum albumins; the other is based on the design of a Cu(II)-specific binding site in a thermostable protein host (tHisF), leading to 46–98% ee in a model Diels–Alder reaction. This sets the stage for genetic fine-tuning using the methods of directed evolution. DOI 10.1002/tcr.201100043