日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Artificial Metalloenzymes as Catalysts in Stereoselective Diels–Alder Reactions

MPS-Authors
/persons/resource/persons58919

Reetz,  Manfred T.
Research Department Reetz, Max-Planck-Institut für Kohlenforschung, Max Planck Society;
Philipps-Universität Marburg, Fachbereich Chemie;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Reetz, M. T. (2012). Artificial Metalloenzymes as Catalysts in Stereoselective Diels–Alder Reactions. The Chemical Record, 12(4), 391-406. doi:10.1002/tcr.201100043.


引用: https://hdl.handle.net/11858/00-001M-0000-000E-F15B-8
要旨
Numerous enzymes are useful catalysts in synthetic organic chemistry, but they cannot catalyze the myriad transition-metal-mediated transformations customary in daily chemical work. For this reason the concept of directed evolution of hybrid catalysts was proposed some time ago. A synthetic ligand/transition-metal moiety is anchored covalently or non-covalently to a host protein, thereby generating a single artificial metalloenzyme which can then be optimized by molecular biological methods. In the quest to construct an appropriate experimental platform for asymmetric Diels–Alder reactions amenable to this Darwinian approach to catalysis, specifically those not currently possible using traditional chiral transition-metal catalysts, two strategies have been developed which are reviewed here. One concerns the supramolecular anchoring of a Cu(II)-phthalocyanine complex to serum albumins; the other is based on the design of a Cu(II)-specific binding site in a thermostable protein host (tHisF), leading to 46–98% ee in a model Diels–Alder reaction. This sets the stage for genetic fine-tuning using the methods of directed evolution. DOI 10.1002/tcr.201100043