English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Proximal microdeletions and microduplications of 1q21.1 contribute to variable abnormal phenotypes

MPS-Authors
/persons/resource/persons50386

Klopocki,  E.
Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;
Institut für Medizinische Genetik und Humangenetik, Charité – Universitätsmedizin Berlin;

/persons/resource/persons50437

Mundlos,  S.
Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society;
Institut für Medizinische Genetik und Humangenetik, Charité – Universitätsmedizin Berlin;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Rosenfeld.pdf
(Publisher version), 666KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Rosenfeld, J. A., Traylor, R. N., Schaefer, G. B., McPherson, E. W., Ballif, B. C., Klopocki, E., et al. (2012). Proximal microdeletions and microduplications of 1q21.1 contribute to variable abnormal phenotypes. European journal og human genetics: EJHG; the official journal of the European Society of Human Genetics, 20(7), 754-761. doi:10.1038/ejhg.2012.6.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000E-F276-2
Abstract
Chromosomal band 1q21.1 can be divided into two distinct regions, proximal and distal, based on segmental duplications that mediate recurrent rearrangements. Microdeletions and microduplications of the distal region within 1q21.1, which are susceptibility factors for a variety of neurodevelopmental phenotypes, have been more extensively studied than proximal microdeletions and microduplications. Proximal microdeletions are known as a susceptibility factor for thrombocytopenia-absent radius (TAR) syndrome, but it is unclear if these proximal microdeletions have other phenotypic consequences. Therefore, to elucidate the clinical significance of rearrangements of the proximal 1q21.1 region, we evaluated the phenotypes in patients identified with 1q21.1 rearrangements after referral for clinical microarray testing. We report clinical information for 55 probands with copy number variations (CNVs) involving proximal 1q21.1: 22 microdeletions and 20 reciprocal microduplications limited to proximal 1q21.1 and 13 microdeletions that include both the proximal and distal regions. Six individuals with proximal microdeletions have TAR syndrome. Three individuals with proximal microdeletions and two individuals with larger microdeletions of proximal and distal 1q21.1 have a 'partial' TAR phenotype. Furthermore, one subject with TAR syndrome has a smaller, atypical deletion, narrowing the critical deletion region for the syndrome. Otherwise, phenotypic features varied among individuals with these microdeletions and microduplications. The recurrent, proximal 1q21.1 microduplications are enriched in our population undergoing genetic testing compared with control populations. Therefore, CNVs in proximal 1q21.1 can be a contributing factor for the development of abnormal phenotypes in some carriers.