English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Are trait-based species rankings consistent across datasets and spatial scales?

MPS-Authors
/persons/resource/persons62433

Kattge,  Jens
Interdepartmental Max Planck Fellow Group Functional Biogeography, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
Citation

Kazakou, E., Violle, C., Roumet, C., Navas, M.-L., Vile, D., Kattge, J., et al. (2014). Are trait-based species rankings consistent across datasets and spatial scales? Journal of Vegetation Science, 25(1), 235-247. doi:10.1111/jvs.12066.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000E-F8A4-E
Abstract
One central assumption of trait screening approaches in comparative plant ecology, i.e. simultaneous measurement of traits on a large number of species or populations, is that the species level captures a major part of trait variation. The current development of large databases has led to a new screening approach that relies on the extraction of trait values from databases, rather than on measurement of traits in the field. We tested this assumption with the following questions: (1) is the magnitude of intra-specific variability of co-occurring species lower than inter-specific variability for a given trait, in comparisons at different spatial scales; (2) is species hierarchy based on trait values conserved across different spatial scales and data sets (stable species hierarchy hypothesis); and (3) when we compare different traits, what is the more stable trait that is conserved across different spatial scales and data sets?