English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Dual use of GTP hydrolysis by elongation factor G on the ribosome.

MPS-Authors
/persons/resource/persons86702

da Cunha,  C. E. L.
Department of Physical Biochemistry, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons40313

Belardinelli,  R.
Department of Physical Biochemistry, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons40304

Peske,  F.
Department of Physical Biochemistry, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons32550

Holtkamp,  W.
Department of Physical Biochemistry, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons16038

Wintermeyer,  W.
Research Group of Ribosome Dynamics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons40302

Rodnina,  M. V.
Department of Physical Biochemistry, MPI for biophysical chemistry, Max Planck Society;

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

da Cunha, C. E. L., Belardinelli, R., Peske, F., Holtkamp, W., Wintermeyer, W., & Rodnina, M. V. (2013). Dual use of GTP hydrolysis by elongation factor G on the ribosome. Translation, 1(1): e24315. doi:10.4161/trla.24315.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000E-FB9B-C
Abstract
Elongation factor G (EF-G) is a GTPase that catalyzes tRNA and mRNA translocation during the elongation cycle of protein synthesis. The GTP-bound state of the factor on the ribosome has been studied mainly with non-hydrolyzable analogs of GTP, which led to controversial conclusions about the role of GTP hydrolysis in translocation. Here we describe a mutant of EF-G in which the catalytic His91 is replaced with Ala. The mutant EF-G does not hydrolyze GTP, but binds GTP with unchanged affinity, allowing us to study the function of the authentic GTP-bound form of EF-G in translocation. Utilizing fluorescent reporter groups attached to the tRNAs, mRNA, and the ribosome we compile the velocity map of translocation seen from different perspectives. The data suggest that GTP hydrolysis accelerates translocation up to 30-fold and facilitates conformational rearrangements of both 30S subunit (presumably the backward rotation of the 30S head) and EF-G that lead to the dissociation of the factor. Thus, EF-G combines the energy regime characteristic for motor proteins, accelerating movement by a conformational change induced by GTP hydrolysis, with that of a switch GTPase, which upon Pi release switches the conformations of EF-G and the ribosome to low affinity, allowing the dissociation of the factor.