English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Reversed timing-dependent associative plasticity in the human brain through interhemispheric interactions

MPS-Authors
/persons/resource/persons19589

Conde,  Virginia
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons20068

Vollmann,  Henning
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons20042

Taubert,  Marco
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19994

Sehm,  Bernhard
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons20065

Villringer,  Arno
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Berlin School of Mind and Brain, Humboldt University Berlin, Germany;

/persons/resource/persons19935

Ragert,  Patrick
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Conde, V., Vollmann, H., Taubert, M., Sehm, B., Cohen, L. G., Villringer, A., et al. (2013). Reversed timing-dependent associative plasticity in the human brain through interhemispheric interactions. Journal of Neurophysiology, 109(9), 2260-2271. doi:10.1152/jn.01004.2012.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000E-FC21-0
Abstract
Spike timing-dependent plasticity (STDP) has been proposed as one of the key mechanisms underlying learning and memory. Repetitive median nerve stimulation, followed by transcranial magnetic stimulation (TMS) of the contralateral primary motor cortex (M1), defined as paired-associative stimulation (PAS), has been used as an in vivo model of STDP in humans. PAS-induced excitability changes in M1 have been repeatedly shown to be time-dependent in a STDP-like fashion, since synchronous arrival of inputs within M1 induces long-term potentiation-like effects, whereas an asynchronous arrival induces long-term depression (LTD)-like effects. Here, we show that interhemispheric inhibition of the sensorimotor network during PAS, with the peripheral stimulation over the hand ipsilateral to the motor cortex receiving TMS, results in a LTD-like effect, as opposed to the standard STDP-like effect seen for contralateral PAS. Furthermore, we could show that this reversed-associative plasticity critically depends on the timing interval between afferent and cortical stimulation. These results indicate that the outcome of associative stimulation in the human brain depends on functional network interactions (inhibition or facilitation) at a systems level and can either follow standard or reversed STDP-like mechanisms.