日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

会議論文

Distinct patterns of brain activity characterize lexical activation and competition in speech production [Abstract]

MPS-Authors
/persons/resource/persons41912

Piai,  Vitória
International Max Planck Research School for Language Sciences, MPI for Psycholinguistics, Max Planck Society, Nijmegen, NL;
Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands;
Radboud University Nijmegen, Cognition and Behaviour, Center for Cognition;

/persons/resource/persons71789

Schoffelen,  Jan-Mathijs
Neurobiology of Language Department, MPI for Psycholinguistics, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

Piai_CNS2013.pdf
(出版社版), 60KB

付随資料 (公開)
There is no public supplementary material available
引用

Piai, V., Roelofs, A., Jensen, O., Schoffelen, J.-M., & Bonnefond, M. (2013). Distinct patterns of brain activity characterize lexical activation and competition in speech production [Abstract]. Journal of Cognitive Neuroscience, 25 Suppl., 106.


引用: https://hdl.handle.net/11858/00-001M-0000-000E-FD78-8
要旨
A fundamental ability of speakers is to quickly retrieve words from long-term memory. According to a prominent theory, concepts activate multiple associated words, which enter into competition for selection. Previous electrophysiological studies have provided evidence for the activation of multiple alternative words, but did not identify brain responses refl ecting competition. We report a magnetoencephalography study examining the timing and neural substrates of lexical activation and competition. The degree of activation of competing words was manipulated by presenting pictures (e.g., dog) simultaneously with distractor words. The distractors were semantically related to the picture name (cat), unrelated (pin), or identical (dog). Semantic distractors are stronger competitors to the picture name, because they receive additional activation from the picture, whereas unrelated distractors do not. Picture naming times were longer with semantic than with unrelated and identical distractors. The patterns of phase-locked and non-phase-locked activity were distinct but temporally overlapping. Phase-locked activity in left middle temporal gyrus, peaking at 400 ms, was larger on unrelated than semantic and identical trials, suggesting differential effort in processing the alternative words activated by the picture-word stimuli. Non-phase-locked activity in the 4-10 Hz range between 400-650 ms in left superior frontal gyrus was larger on semantic than unrelated and identical trials, suggesting different degrees of effort in resolving the competition among the alternatives words, as refl ected in the naming times. These findings characterize distinct patterns of brain activity associated with lexical activation and competition respectively, and their temporal relation, supporting the theory that words are selected by competition.